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Transverse Modal Analysis of Printed
Circuit Transmission Lines

HUNG-YUET YEE, SENIOR MEMBER, IEEE

Abstract — Dispersion characteristics of finned reetangnlar wavegnides,

firdines, shielded slotfines, shielded microstrip and stripfines, and shielded

two-coupled slotlines and striplines are formulated by the transverse modaf

analysis method. A rectangular cavity is formed by placing two electric

walls transverse to a uniform transmission-fine system. Considering that

the wave propagation is in the direction transverse to the transmission line

and to the dielectric discontinuities, the rectangular cavity can be viewed as

multiple rectangular wavegnide sections joined by the discontirruities. The

rectangular wavegnide modaf anafysis technique is readily applicable to

obtain the dkpersion characteristics by matching the boundary conditions

at the discontinuities interface. Numerical solutions are obtained using

Galerkin’s method, and the results are compared with several numerical

techniques for various transmission-fine systems.

I. INTRODUCTION

s

CA~ERINGS from waveguide irises using the modal

analysis technique have been investigated by Lee et al.

[1] and Mittra et al. [2]. It is of interest to note that the

numerical convergence depends on the ratio of the number

of waveguide modes to the iris modes when the Galerkin’s

method is employed to obtain the numerical solutions. This

technique is applicable to the transverse conducting strip in

a rectangular waveguide and the convergence characteris-

tics are similar to the waveguide iris solution. Taking

advantage of the simplicity of the rectangular waveguide

modal analysis, printed circuit transmission-line systems

will be treated in this paper. This technique is well suited

for the computation of practical narrow strips or slotlines

where only a small determinant is required. Closed-form

approximated equations can be derived for obtaining the

physical insight to the solutions.

The orthogonal mode theory has been applied to ridge

waveguide studies first by Collin and Daly [3] and then by

Montgomery [4]. Their approach is similar to the present

slotline formulation. The finline discontinuites are analyzed

by Sorrentino and Itoh [5] using the transverse resonance

method, which is similar to the techniques discussed in this

paper. However, the emphasis here is on the numerical

accuracy and the applications to various printed circuits

transmission-line systems. The application of the transverse

modal analysis to study microstrips and suspended-sub-

strate striplines has not been reported in the literature. To

simplify the presentation, stripline is understood to repre-

sent suspended-substrate stripline throughout this paper.

The following formulation is applicable to rectangular

cavities with planar discontinuities. For shielded slotlines
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Fig. 1. Schematic diagram of two dielectric layer cavity. (a) Finline.
(b) Shielded microstnp.

or striplines, a rectangular cavity can be formed by placing

two electric walls transverse to the transmission line as

shown in Figs. 1 and 2. Considering that the propagation is

transverse to the slotline or stripline, the cavity can be

recognized as multiple rectangular waveguide sections

joined by the slotlines or striplines. A determinant, which
is a function of frequency, can be derived by the modal

analysis method. Slotline and stripline dispersion solutions

are determined by cavity resonant frequencies which can

be computed by setting the determinant equal to zero.

Equations derived in this paper are applicable to the

following transmission-line systems:

~~1) finned rectangular waveguides,

2) finlines and shielded slotlines,

3) shielded microstriplines and striplines, and

4) shielded two broadside- or offset-coupled slotlines

and striplines.
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3’ (O,b,h) the transmission-line system is equal to 2 b. Only uniform

transmission lines are considered throughout this paper.

A. Finlines

4 The geometry of a finline parallel to the y-axis is shown

in Fig. l(a). Two electric walls are placed perpendicular to

the y-axis at y = O and y = b to form a finline cavity.
p

9 [
Consider that this cavity consists of two rectangular wave-. . . .

/

ReyiOn 1
guide sections where the propagation is along the z-axis.

These two waveguide sections are joined by a window at

<+-$ ~
a Rx

c z = g and are terminated by an electric wall at z = h, an

c’ d’ electric or a magnetic wall at z = O, depending on the

(a) required geometry.

Derived equations in this subsection are applicable to

finned rectafigular waveguides and bilateral firdines. For a ‘
5A (O, b,h) bilateral finline, a magnetic wall at z = O produces the

even-mode dispersion solution, while an electric wall yields

the odd-mode results.

The fields in the two waveguide sections are expressed

by the rectangular waveguide modal functions as follows

[6].

For g > z >0 (region 1):

~r=~An%[$&(Bnz)] (la)
region 1 n

0< i

“z
c +d a .Ht = j~A#x$.YE [~n(l%z)]. (lb)

c’- d’+
n

For h > z > g (region 2):
(b)

li(=~ll.+.sin~~(h-z) (la)
Fig. 2. Schematic diagram of three dielectric layer cavity. (a) Shielded

two slotlines. (b) Shielded two striplines.
H*’ = : j~Bn2x@nY;cos~; (#l - z). (2b)

Following the examples illustrated here, more complicated
n

transmission-line systems using striplines or slotlines can Here, the upper and lower functions tie applied to the

be analyzed by this technique. electric and magnetic wall at z = O, respectively, n is the

In the presence of dielectric layers, the field distribution compound modal index which represents two index nulm-

bers plus an index indicating the TE or TM mode, and +.is confined to the neighborhood of the striplines or slot-

lines. Choosing sufficiently large waveguide sidewall spac- is the normalized waveguide veetorial modal function. Note

ings, open geometries can be approximated by shielded that the unprimed and primed quantities are employed to

versions with negligible errors. Thus, the transverse modal indicate the difference in the relative dielectric constants in

analysis method is applicable to approximate the open
regions 1 and 2, respectively. The wave admittance is

geometry of slotlines and striplines. related to the z-propagation constant fl. by Y. = & /(Jp

The emphasis of this study is on the demonstration of for TE modes, and Y. = QC/~. for TM modes, where tit is

achievable accuracy, not on the investigation of propa- the angular frequency, p and c are the permeability and

gation characteristics. In addition to the comparison with
permittivity, respectively, and

known solutions, numerical convergence of the present

application is also investigated. It is shown that the conver’

gence characteristics of the computed resonant frequencies

are similar to those observed in the scattering by irises or

strips in rectangular waveguides.

II. FORMULATION

The basic formulation employs the transverse resonance

concept and the modal analysis technique for rectangular

waveguide discontinuities. Slotline and stripline cavities as

shown in Figs. 1 and 2 are formed for computing the

dispersion characteristics. Throughout this paper, the y-

dependence of the field is either cos(my/b) or sin(ry/b).

At the cavity resonant frequency, the guided wavelength of

L
}[/% =

k2:,(n7r/a)2-(7@)2]1’2. (3)

Let the electric field in the slot aperture be expressed by

(4)

q

where Qq is the vectorial basis function which may be

represented by the modal functions of the slot equivalent

waveguide, or, simply by pulse functions. The bouhdary

conditions at the slot plane are

E,= E;= (Ea, on the aperture

o,
(5)

elsewhere

H,= H;, on the aperture. (6)
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To enforce these boundary conditions, (l)-(4) are sub-

stituted into (5) and (6). Taking the scalar product of ~~

with the resultant equation obtained from (5) and integrat-

ing over the rectangular waveguide cross-section area yields

An~s(Bng) =Basin[BJ(~– g)]=XcqJZqn (’0
q

where

Wq. = ~lOtQq” %ds. (8)

Taking the scalar product of flq with the equation obtained

from the boundary condition (6), integrating over the slot

aperture, and combining with (7), we obtain a matrix

equation given in the following form:

[M][c]=o (9)

where

Mpq = ~ WqxWP~G~ (lo)

Gn= Y~wt [~~(h -~)] +Yn[ ~~~n(~ng)]. (11)

In order to obtain a set of nontrivial coefficients, the

determinant of the square matrix constructed from (9)

must vanish. Since the determinant is a function of

frequency and the finline guided wavelength is equal to 2b,

this requirement determines the cavity resonant frequencies

and, hence, the dispersion characteristics of the finline.

Substituting the resonant frequency back into (9), the slot

field expansion coefficients and, hence, the cavity field can

be computed from the above equations.

. B. Shielded Microstrips

Similar to the finline, a cavity can be formed by placing

two electric walls perpendicular to the shielded microstrip

as shown in Fig. l(b). This configuration can be employed

to compute the dispersion characteristics of two shielded

broadside-coupled striplines. The magnetic wall at z = O

yields the even-mode solution while the electric wall at

z = O applies to the odd-mode computation. Conveniently,

(1) and (2) are used to represent the x- and y-components
in regions 1 and 2, as before. Replacing the slot field

representation by the stripline surface current density

J= j~Cqvq (12)

q

the pertinent boundary conditions are

(Et=E; ‘0’
on the stripline

(13)
elsewhere

(2 J,
2X( H,– H;)= o

on the stripline
(14)

,, elsewhere.

To enforce these boundary conditions, we first substitute

(1), (2), and (12) into (13) and (14). Taking the scalar
product of the resultant equation obtained from (13) with

+., then integrating over the waveguide cross section and
taking the scalar product of the same equation with Vp,

then integrating over the stripline area, yields

An[&(&g)]= B~sin[~J(h–g)]=u. (15)

~ ~nun = o (16)
n

where U. can be computed by combining (l), (2), (12), (14),

and (15) and is given by

Un= 2~ CqWqn/Gn. (17)
n

Here, G. is given by (11), and W is defined by (8) with the

slot field basis function replaced by the stripline surface

current basis function. Upon substituting (17) into (16), we

obtain a matrix equation given by the same form of (9)

with the matrix elements defined by

(18)

After solving the determinant equation for the cavity reso-

nant frequency, the current expansion coefficients and the

cavity field distribution can be computed by substituting

into (l), (2), (15), and (17).

C. Multiple Conductors with Multiple Dielectric Layers

The derivation shown above is applicable to simple

finline or microstrip with only two dielectric layers (electric

wall) or two broadside-coupled slotlines or striplines (elec-

tric wall for odd mode, magnetic wall for even mode). The

same concept is also applicable to the general case of

multiple conductors with multiple dielectric layers as shown

in Fig. 2. The following equations are derived for two

offset-coupled slotlines or two offset-coupled striplines.

With reference to Fig. 2(a) or (b), the fields in regions 1

and 2 can be expressed by the same equations as before. In

region 3, where g < z < g’, the x- and y-components are

written as

E:= ~ [1.exp( - j~:z)+ R.exp( jfl~’.z)] ~. (19a)
n

H:’= ~ [1.exp(– jp:z)–ll.ex p(j~;’z)] Yn~x4n

(19b)

where the double prime stands for region 3. All quantities

in region 3 are defined the same as in region 2, except the

prime is replaced by double prime.

Consider first the slotline case. The slot aperture electric

field at z = g is defined by (4), and at z = g’ by

E;= ~ C;Q;. (20)
q

Enforcing the boundary conditions at z = g and g’, taking

the scalar inner product of the electric field with the fields

in the slotlines defined above, and a little mathematical
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manipulation we obtain tic impedance can be computed by the known field distri-

bution, which requires the solution of (21). For the strip-1,= [~exp(jP;g’)-~exP (JP~@)]/
line case, (21) is replaced by the following form:

(2jsin[B~(ft - g)]] (zla) In= [un.xp(jp;g’)-u; .xp(jB:g)l/

R,= [~exp(- j~$g)-~exp(- j@@’)]/
[Zjsinp;(g’- g)] (~jTa)

{zjsin[~~(g’-g)]} (Zlb) R.= [U;exp(-j&z’’g) -Unexp(-jB{g)]/

where W and W‘ are defined as in (8) with integration

limits and basis functions specified for the corresponding

slotlines. Upon substituting these two equations into the

magnetic-field equations obtained from the boundary con-

ditions, a simple manipulation yields the following two

matrix equations:

(21C) [2jsin~:(g’ - g)] (27b)

(21d)
where

un = – j~ (G; J,Wqn + Fa.iqwqn)/Dn (28a)

[%ml =[M%]
[%IISI=[L’fJ[cql

where

(22a)

(22b)

q

U;= – .iX (GnJ;W;n + FnJqwqn)/Dn. (21%)

q

W and W’ are defined by (8) with die slot field basis

function replaced by the stripline surface current basis

function and the integration limits taken over the corre-

sponding stripline. These equations can be used to specify

the field distribution at the given resonant frequency. Note

that the convention of the magnetic or electiic whll at z‘= O
remains valid for the above equations.

‘pq = Z ‘pnwqnG. (23a) III. MODAL FUNCTIONS AND BASIS FUNCTIONS

n
The rectangular waveguide vectoral modal functions for

R;q = ~ Wo;Wa;G; (23b) TE ahd TM modes are given by Marcuvitz [6] in the. . . .
n following normalized expressions:

‘pq = Z ‘pnwqLFn (23c)
n

T;q = ~ W;nWqnFfi (23d)
n

% = Z[ ::~(~pd]+L“cdfi;’(i- d] (24a)

G;= Y;cot [~;(h – g’)] +Y;cot[P;(# – g)] . (~4b)

Eliminating [C;] in (22), we obtain the matrix equation

given by the same form of (9) with

[“w]= k] - [?d[%] “[~;q]. (25)
The nontrivial solution of [Cq] and, herice, [C$ can be

computed by setting the determinant of (25) equal to zero

as in the previous finline and microstripline cases.

Equations similar to (22)–(25) can be derived for the two

offset-coupled striplines as shown in Fig. 2(b). In this case,

the slot aperture electric fields of (4) and (20) are replaced

by the siuface current densities of (12) and

(26)
q

Using the same derivation as in tlie shielded microstrip

case, we obtain (22) and (25), provided that G. and G; in
(23a) and (23b) are replaced by G;/D. and G./D., respec-

tively, and F. in (23c) and (23d) is replaced by – F./Dn,

where

D.= G.G; – F.2.

After the resonant frequency is determined, the characteris-

[;::] =~.[~(:$)~xw+~-;f]~yn](29,

N,= (2&/ab/[(n/a)2+ (l/b)’] }“2 (30a)

[1E xn

E
=~~(nIIx/a)~&(If y/b) (30b)

yn

(

~= lifn=O
n 2ifn#0.

(ioc)

These expressions have been specified for the y-depen-

dence as shown. Both TE and TM are referred to the

z-propagating modes and are suitable for the present appli-

cation.

In general, the basis functions in (4), (12), (20), and (26)

have both the x- and y-compone~ts since the general

propagating modes in a slotline or a stripline are hybrid

modes. However, the dominant slotline mode is a TE mode

and the dominruit stripline mode is a quasi-TEM mode:

Thus, the fundamental mode i’equires only the x-compo-

nent of the slot field or the y-component of the strip line

current.

For a narrow slot or strip, single field or current compo-
nent representation is sufficient not only for the dominant

mode, but also for the next higher order mode. Also, only

one or two terms in the basis functions ~e ,adequate to

represent the slot field or the strip current density, and the

solution obtained is sufficiently accurate for many en-

gineering applications. The following general form cam be
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used for all cases considered above:

Qq = %CX~eX~+ jCY~eYq (31)

V~= 2C:qjxq + ~ciqJyq (32)

[1
eXq = Cos

sin [q7r(x - c)/d] ~~(7ry/b) (33a)
‘Yq

[1J.q=$s[w(x-c)/~1::(wMO. (33b)
jYq

The primed basis functions are given by the same expres-

sions as above except that c and d are replaced by c’ and

d‘, respectively.

For a narrow slotline or stripline, the pulse basis func-

tions are quite accurate and can be used for practical

computation. The pulse basis function is defined

(1,
W(vq,A)= ~

xq– A/2<x<xq+ A/2
(34)

> elsewhere

where x q is an arbitrary point on the slot aperture or the

strip conductor. Equation (34) is used to replace the first

factor in the right-hand side of (33).

IV. NUMERICAL RESULTS

Based on the above formulation and the specified basis

functions, dispersion characteristics of finned rectangular

waveguides, shielded bilateral finlines, microstrip, and

shielded coupled striplines are computed for comparison

with various published results. Favorable comparisons

verify the validity and the usefulness of the transverse

modal analysis technique. Trigonometric basis functions

are used to compute the following dispersion results by the

transverse modal analysis (TMA) method unless othefiise

stated. All the frequencies listed in the following are under-

stood in gigahertz and lengths in inches.

A. Finned Rectangular Waveguides

A finned rectangular waveguide is a finline without the

dielectric substrate as shown in Fig. l(a). Numerical solu-

tions can be computed from the equations derived in

Section II-A with identical dielectric constants. Waveguide

dimensions of a = 1 in by h = 2 in and the finlines located

at the middle of the waveguide are chosen for the present

example.

Consider first the half-width slot where d = 0.5 in. The

computed dominant mode cutoff wavelengths with slot
mode to the waveguide mode ratios equal to 1/2, 1/4, and

3/4 are shown in Fig. 3(a). The proper mode ratio is 1/2.

The noncontributing modes by geometric symmetry are

kept for computer programming convenience. Keeping the

wa~reguide mode number equal to 30, the cutoff wavelength

versus the number of slot modes is plotted in Fig. 3(b).

These plots are similar to the equivalent susceptance of a

waveguide iris computed by the modal analysis. Similar

convergence characteristics are observed using the pulse

basis functions, but the rate of convergence is slower. Note

that the computed cutoff wavelengths are independent of

the cavity length chosen in the computation.

I I
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Fig. 3. Computed cutoff wavelength for a finned rectangular waveguide.
(a) Constant slot to waveguide mode ratio. ~ ratio= 1/2,

eeerati~ = 1/4, AAA ratio= 3/4. (b) 30 waveguide modes.

TABLE I
COMPARISONOFTHE FINNED RECTANGULARWAVEGUIDE CUTOFF

WAVELENGTH

TMA TLM TR

Slot W,dth Trlgonometnc Pulse S(ngle BF

1/2 44503 44583 45233 44385 44464

1/4 51950 52115 52488 51760 5 1S67

1/16 65961 66227 65946 65703 65876

Waveguide dimensions: 1“ by 2“.

Computed cutoff wavelengths of various finned rectan-

gular waveguides are tabulated in Table I. Proper mode

ratios and a sufficient number of basis functions are em-

ployed by the TMA method. These results compare favor-

ably with those computed by Shih and Hoefer [7] using the

transmission-line matrix (TLM) technique and by Hoefer

[8] using the quasi-static transverse resonant (TRT) method.

Numerical experiments show that sufficient accurate re-

sults are obtained by adding one more basis function for

each incremental slot width of 0.01 wavelength. For a
narrow slot with slot width d =1/16, shown in Table I,
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TABLE II
COMPUTEDCUTOFFFREQUENCIESOFFINLINE #1

TABLEIII
COMPUTEDEFFECTIVEDIELECTRICCONSTANTSOFFINLINE #2

slot Slab TMA TLM
Width Th!ckness Oomt Mode 2nd Mode Domt Mode 2nd Mode

1[8 118 15202 38794 1514 3965

1/8 1/4 14117 3.4370 1415 3486

1/8 1/2 13807 28625 1.359 2890

1/2 1/8 23041 55683 2.306 s 594

1/2 1/4 21364 51485 2.125 5.144

1/2 112 19897 4,4590 1987 4450

only one basis function is required to obtain the compara-

ble accuracy. Using only one basis function, the computed

cutoff wavelength is equal to 6.5946 as compared to 6.5899

using nine basis functions.

B. Bilateral Finlines

The bilateral firdine is shown in Fig. 2(a) with c = c’ and

d = d‘. The odd-mode dispersion characteristics are identi-

cal to that in a shielded slotline. Bilateral finlines have

been investigated by Shih and Hoefer [9], who employed

the TLM method, and Schmidt and Itoh [10], who em-

ployed the spectral-domain (SD) method. The following

two configurations are considered here.

Finline #1

Waveguide dimensions

Dielectric slab

Slot width

Finline #2

Waveguide dimensions

Dielectric slab

Slot width

1.0 by 2.0 in,

relative dielectric constant =

2.2,

thickness = 0.5 in, 0.25 in,

and 0.125 in,

0.5 in and 0.125 in.

0.14 in by 0.28 in,

relative dielectric constant =

3.0,
thickness = 0.00492 in,

0.019685 in.

Tabulated in Table II are the computed cutoff frequencies

of the bilateral finline #1. Cutoff frequencies can be

computed by setting b extremely large compared to a.

Both the dominant and second-order mode cutoff frequen-

cies computed by the TMA method compare favorably

with those computed by TLM shown in the same table.

The effective dielectric constants of the dominant and

second-order modes in finline #2 have been computed by

Schmidt and Itoh using” the SD method [10]. Their results

are tabulated in Table III with those computed by the

TMA method. Excellent agreement between these two sets

of computed results verify the validity of these two meth-

ods. Note that the square root of the effective dielectric

constant is equal to the resonant wavelength divided by 2b.

To illustrate the dielectric slab effect on the convergence

characteristics, computed effective dielectric constants of

the dominant mode in firdirte #2 versus the maximum slot

mode index are shown in Fig. 4, where the proper mode

ratio is 1/8. Note that the convergence is about the same

Dominant Mode

Frea TMA

14.100 02737

21.621 08278

29262 10168

37375 1 1081

54.038 11927

62.906 1.2182

Second Order Mode

SD Freq TFAA SD

0.250 47645 00240 0.00

0828 50.893 01494 0157

1026 5529o 0.2848 0297

1,120 60928 0.4170 0.423

1200 74.807 0.6224 0631

1225

s~ 0,97

j
0.96

:

$’ 0.95

z

$ 0,94
U

0,93

092

091

0 5 10 15 :20

Mmamum Slot Mode #

(a)

1.03

1
1.02 13--- —

1,01

1

: :B

1.00,92,,
A

. .j \ .28#!

0.99 ,,~~~
r“ ..,97,,

-1

0.98 I-.,4.-I

0.97

0 5 10 15 20

Maximum Slot Mode H

(b)

Fig. 4. Computed effective dielectric constant for finline #2 at 29.26
GHz. (a) Constant mode ratio. m ratio =1/8,()00 ratio= 1/4. (b)
80 waveguide modes.

as in the absence of the dielectric slab. Plotted in Fig. 5 are

the same dispersion results computed by the pulse basis

functions. Computed results by the pulse basis functions

converge slower than, but approach the same solutions as

computed by the trigonometric basis functions- ,

C. Shielded Microstrips

Dispersion characteristics of shielded microstrips have

been investigated by Daly [11] using the finite-element
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Fig. 5. Effective dielectric constant of finline #2 at 29.26 GHz com-
puted by pulse-basis function. (a) Pulse to waveguide mode ratio = 1/8.
(b) 80 waveguide modes.

TABLE IV
COMPARISON OF COMPUTED EFFECTIVE DIELECTRIC CONSTANT OF

A SHIELDED MICROSTIUP.

Quasi-TEM Mode Wavegu!de Mode

Freq TMA Flnlte Element Freq TMA Flnlte Element

3411 29934 2964 6440 08398 0841

4402 31952 3185 7553 18053 1090

6337 34681 3455 9495 1 5452 1 536

8819 36555 3635 12099 1 9422 2081

10201 37187 3712 13288 21916 2340

Stripline width= 0.5”. Waveguide dimensions: 1.0” by 0.5”. Dielectric
slab: thickness = 0.25”. Relative constant = 4.0.

method. The effective dielectric constants of the dominant

mode (quasi-TEM mode) and a higher order mode com-

puted by the finite-element method and by the transverse

modal analysis method are shown in Table IV. Observe

that these values, including both the quasi-TEM and a

higher order mode, computed by two different methods

agree very well with each other.

Depicted in Fig. 6 are the computed effective dielectric

constant versus the strip modal index number for the

example micro,strip at the frequency approximately equal

to 6.34 GHz. The proper mode ratio is 1/2. The conver-

3,53

3.52

z
3.51

+

:
v
“ \
. 3.5
.
%
G

~
0 3.49 1,

I I ( I

$’~
: 3,48 1A
fi

3.47 A > 1,
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Fig. 6. Computed effective dielectric constant of a shielded microstrip
at 6.34 GHz. (a) Strip to waveguide mode ratio =1/2. (b) 30 waveguide
modes.

gence is similar to that for finlines except that the com-

puted effective dielectric constant follows a decreasing

trend as the strip mode number increases.

D. Broadside-Coupled Striplines

Using the equations derived in either Section II-B or

II-C, one can compute the dispersion characteristics of

shielded two broadside-coupled striplines. When the equa-

tions derived in Section II-B are employed, the electric wall

equations are applied to the odd modes and the magnetic

wall equations to the even modes.

Computed effective dielectric constants of both even and

odd modes are tabulated in Tables V and VI for compari-

son with those computed by Kawano [12] and Wu [13]. The

results of Kawano and Wu are computed by the spectral-

domain technique with no sidewalls in the geometry. How-

ever, two sidewalls are required using the transverse modal

analysis method. The sidewall effects on the odd mode is

negligible if the sidewall spacing is equal to 10 stripline

widths or greater. In the case of the even mode, the

sidewall spacing must be equal to or greater than 20

stripline widths. Thus, a 20-stripline width sidewall spacing
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TABLE V
COMPARISONOF COMPUTEDEFFECTIVEDIELECTRICCONSTANTS

OF Two SHIELDEDBROADSIDESTRIPLINES

Even Mode Odd Mode

Freq TMA Kawano V!lu Freq TMA Kawano Wu

2.664 1 2269 1 224 1 244 2151 18818 1877 1916

6647 12317 1234 1 253 5341 1 9077 1900 1926

8846 12365 1241 1258 7097 19210 1913 1939

13197 12499 1246 1271 10585 1 9430 1935 1958

25636 1 3249 1331 1 353 20888 19956 1989 2006

29178 13358 1386 27647 20252 2019 2040

Waveguide dimension: 1.1969” by 0.2992”. Dielectric slab: thickness

= 0.02992”. Relative constant= 2.32. Stripfine width= 0.05984”.

TABLE VI
COMPARISONOF COMPUTED EFFECTIVE DIELECTRIC CONSTANTS

OF Two SHIELDED BROADSIDE STRIPLINES

Even Mode Odd Mode

Freq TMA Kawano Wu Freq TMA Kawano Wu

2.064 2045 203 208 2281 6.694 668 678

4111 2061 208 215 5647 6.826 678 689

10061 2151 216 215 11133 7026 697 709

18711 2487 245 255 21761 7355 727 742

27947 3097 291 305 27597 7516 741 759

Waveguide dimension: 0.4724” by 0.2992”. Dielectric slab: thickness=

0.02992”. Relative constant = 9.6. Stripline width= 0.05984”.

TABLE VII
COMPARISONOF COMPUTEDEFFECTIVEDIELECTIUCCONSTANTS

OF Two OFFSET COUPLED STRIPLINES

Odd Mode Even Mode

Freq TMA Wu Freq TMA Wu

4025 2150 2142 4155 2017 2026

10059 2151 2144 10389 2017 2026

20.109 2153 2.147 20778 2.017 2027

29780 2155 2.150 30780 2017 2029

39396 2157 2153 39573 2.017 2029

20 573* 00

23000’ 0412 0375

29,096’ 1029 1050

39000 ‘ 1479 1530

Offset = 0.05”. Wavegnide dimension: 2.0” by 0.134”. Dielectric slab:
thickness = 0.01”. Relative constants= 2.0 and 2.2. Stripline width= 0.1”.

*Higher order modes.

is used to compute the TMA results shown in Tables V and

VI.

Observe that the effective dielectric constants computed

by the TMA method fall between the results computed by

Kawano and Wu. The data of Kawano and Wu are ob-

tained from interpolation of plotted curves. It is interesting

to note that identical TMA results are obtained using the

equations of Sections II-B and II-C.

E. Offset-Coupled Striplines

A generalized geometry of two offset-coupled striplines

as shown in Fig. 2(b) is quite important in the coupler

design. Its propagation characteristics have not been re-

ported in the open literature. Using the equations derived

in Section II-C, the dispersion characteristics of two

offset-coupled striplines can be computed. The computed
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effective dielectric constants of two dielectric geometries

are tabulated in Table VII. Also tabulated in Table VII is

the dispersion results computed by Wu [13] using th~e

spectral-domain method as in the broadside-coupled strip-

lines.

Again, excellent agreement is observed for both even-

and odd-mode solutions between these two computational

methods.

V. CONCLUSION

The transverse modal analysis has been demonstrated m

a useful technique for computing the dispersion character-

istics of several transmission-line systems, such as finned

rectangular waveguides, finlines, shielded microstrips and

strips, and shielded two-coupled slotlines and strips.

Numerical results computed by the transverse modal anal-

ysis method are in close agreement with those computed by

the transmission-line matrix, transverse resonance, finite-

element, and spectral-domain methods. The achievable ac-

curacy is beyond engineering requirements. Both the domi-

nant mode and higher order modes have been examined.

Although most of the computation used trigonometric

basis functions, it is shown that comparable accuracy is

achieved by the pulse basis functions, especially for narrow

slotlines or striplines. However, in the case of broad slots

or strips, the computed results using the pulse functions we

less accurate and converge slower than those using trigono-

metric functions.

Also, it is demonstrated that the convergence is not

affected by the presence of a dielectric slab. It is shown

that only a small number of basis functions are required

for narrow striplines or slotlines. Therefore, the transverse

modal analysis is well suited for printed circuit transmis-

sion-line analysis.

In addition to the transmission-line systems discussed

above, the transverse modal analysis can be applied to

other complicated configurations. The dispersion chara-

cteristics of a slot coupled to a parallel stripline can be

computed by a modification of (22)–(24). Multiple layers

of dielectric slabs transmission-line systems can be in-

vestigated by extension of the technique formulated here.
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