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Transverse Modal Analysis of Printed
Circuit Transmission Lines

HUNG-YUET YEE, SENIOR MEMBER, IEEE

Abstract —Dispersion characteristics of finned rectangular waveguides,
finlines, shielded slotlines, shielded microstrip and striplines, and shielded
two-coupled slotlines and striplines are formulated by the transverse modal
analysis method. A rectangular cavity is formed by placing two electric
walls transverse to a uniform transmission-line system. Considering that
the wave propagation is in the direction transverse to the transmission line
and to the dielectric discontinuities, the rectangular cavity can be viewed as
multiple rectangular waveguide sections joined by the discontinuities. The
rectangular waveguide modal analysis technique is readily applicable to
obtain the dispersion characteristics by matching the boundary conditions
at the discontinuities interface. Numerical solutions are obtained using
Galerkin’s method, and the results are compared with several numerical
techniques for various transmission-line systems.

1. INTRODUCTION

CATTERINGS from waveguide irises using the modal

analysis technique have been investigated by Lee ef al.
[1] and Mittra et al. [2]. It is of interest to note that the
numerical convergence depends on the ratio of the number
of waveguide modes to the iris modes when the Galerkin’s
method is employed to obtain the numerical solutions. This
technique is applicable to the transverse conducting strip in
a rectangular waveguide and the convergence characteris-
tics are similar to the waveguide iris solution. Taking
advantage of the simplicity of the rectangular waveguide
modal analysis, printed circuit transmission-line systems
will be treated in this paper. This technique is well suited
for the computation of practical narrow strips or slotlines
where only a small determinant is required. Closed-form
approximated equations can be derived for obtaining the
physical insight to the solutions.

The orthogonal mode theory has been applied to ridge
waveguide studies first by Collin and Daly [3] and then by
Montgomery [4]. Their approach is similar to the present
slotline formulation. The finline discontinuites are analyzed
by Sorrentino and Itoh [5] using the transverse resonance
method, which is similar to the techniques discussed in this
paper. However, the emphasis here is on the numerical
accuracy and the applications to various printed circuits
transmission-line systems. The application of the transverse
modal analysis to study microstrips and suspended-sub-
strate striplines has not been reported in the literature. To
simplify the presentation, stripline is understood to repre-
sent suspended-substrate stripline throughout this paper.

The following formulation is applicable to rectangular
cavities with planar discontinuities. For shielded slotlines
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Fig. 1. Schematic diagram of two dielectric layer cavity. (a) Finline.

(b) Shielded microstrip.

or striplines, a rectangular cavity can be formed by placing
two electric walls transverse to the transmission line as
shown in Figs. 1 and 2. Considering that the propagation is
transverse to the slotline or stripline, the cavity can be
recognized as multiple rectangular waveguide sections
joined by the slotlines or striplines. A determinant, which
is a function of frequency, can be derived by the modal
analysis method. Slotline and stripline dispersion solutions
are determined by cavity resonant frequencies which can
be computed by setting the determinant equal to zero.

Equations derived in this paper are applicable to the
following transmission-line systems:

« 1) finned rectangular waveguides,
2) finlines and shielded slotlines,
3) shielded microstriplines and striplines, and
4) shielded two broadside- or offset-coupled slotlines
and striplines.

0018-9480 /85 /0900-0808%01.00 ©1985 IEEE



YEE: PRINTED CIRCUIT TRANSMISSION LINES

31 (0,b,h)
I
—_——— - A
//} / /7 //
I v Wiy s san (R
ion, 2 l / // /
gl < \/ 4 AR
/ v 7/ %
g 4 Redion 3
7/ Region 1
» X
c—-l-—d-| a
t_-c'—ble-d—fl
(a)
L (0,b,h)
7 .
{__
/ - = 7 7 /7
Ll
£ / /Sy /
By 2 s/
3’2_415_1{3_[_ /_-__/ /
/ )/ S /
gil. . pLBHER3_ Y
/
V4 Region 1
on——c—’ln-d'l a .
e & o |
)

Fig. 2. Schematic diagram of three dielectric layer cavity. (a) Shielded
two slotlines. (b) Shielded two striplines.

Following the examples illustrated here, more complicated
transmission-line systems using striplines or slotlines can
be analyzed by this technique.

In the presence of dielectric layers, the field distribution
is confined to the neighborhood of the striplines or slot-
lines. Choosing sufficiently large waveguide sidewall spac-
ings, open geometries can be approximated by shielded
versions with negligible errors. Thus, the transverse modal
analysis method is applicable to approximate the open
geometry of slotlines and striplines.

The emphasis of this study is on the demonstration of
achievable accuracy, not on the investigation of propa-
gation characteristics. In addition to the comparison with
known solutions, numerical convergence of the present
application is also investigated. It is shown that the conver-
gence characteristics of the computed resonant fréquencies
are similar to those observed in the scattering by irises or
strips in rectangular waveguides.

II. FORMULATION

The basic formulation employs the transverse resonance
concept and the modal analysis technique for rectangular
waveguide discontinuities. Slotline and stripline cavities as
shown in Figs. 1 and 2 are formed for computing the
dispersion characteristics. Throughout this paper, the y-
dependence of the field is either cos(7y/b) or sin(wy/b).
At the cavity resonant frequency, the guided wavelength of
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the transmission-line system is equal to 25. Only uniform
transmission lines are considered throughout this paper.

A. Finlines

The geometry of a finline parallel to the y-axis is shown
in Fig. 1(a). Two electric walls are placed perpendicular to
the y-axis at y=0 and y=2> to form a finline cavity.
Consider that this cavity consists of two rectangular wave-
guide sections where the propagation is along the z-axis.
These two waveguide sections are joined by a window at
z =g and are terminated by an electric wall at z= 4, an
electric or a magnetic wall at z=0, depending on the
required geometry.

Derived equations in this subsection are applicable to
finned rectangular waveguides and bilateral finlines. For a -
bilateral finline, a magnetic wall at z=0 produces the
even-mode dispersion solution, while an electric wall yields
the odd-mode results. ‘

The fields in the two waveguide sections are expressed
by the rectangular waveguide modal functions as follows
[6].

For g > z > 0 (region 1):

E=TAs, [sin (8,2)] (1a)

cos ] ' (1b)

H,= j¥ 4,550, % (8,2)

For h > z > g (region 2):

Et/= ZBn¢n81nBr:(h_ Z) (23)

H/=—jLB,x¢,Ycospi(h=2).  (2b)
n

Here, the upper and lower functions are applied to the .
electric and magnetic wall at z = 0, respectively, n is the

" compound modal index which represents two index num-

bers plus an index indicating the TE or TM mode, and ¢,
is the normalized waveguide vectorial modal function. Note
that the unprimed and primed quantities are employed to
indicate the difference in the relative dielectric constants in
regions 1 and 2, respectively. The wave admittance is
related to the z-propagation constant 8, by ¥, =B, /wu
for TE modes, and Y, = we /B, for TM modes, where o is
the angular frequency, p and € are the permeability and
permittivity, respectively, and

B, 12
=[5 (nmyay = (ayoy’]
B, €
Let the electric field in the slot aperture be expressed by
E,=).CA, (4)
q

3)

where &, is the vectorial basis function which may be
represented by the modal functions of the slot equivalent
waveguide, or simply by pulse functions. The boundary

conditions at the slot plane are

. E_, on the aperture
Et = Et/ = { ¢ P (5)
0, elsewhere
H =H, on the aperture. (6)
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To enforce these boundary conditions, (1)-(4) are sub-
stituted into (5) and (6). Taking the scalar product of ¢,
with the resultant equation obtained from (5) and integrat-
ing over the rectangular waveguide cross-section area yields

4,50 (B,8) = B,sin[B;(h—g)] = %Cqu" ™
where

(8)

Taking the scalar product of £, with the equation obtained
from the boundary condition (6), integrating over the slot
aperture, and combining with (7), we obtain a matrix
equation given in the following form:

[M][C]=

w,=[ 2.6,4dS.
1 Llot qq)

(©)

where

MM=ZW w,.G,

gqn’ " pn

(10)

G, =Y cot[Bi(h—g)]+7,[ S (B0)]. (1)
In order to obtain a set of nontrivial coefficients, the
determinant of the square matrix constructed from (9)
must vanish. Since the determinant is a function of
frequency and the finline guided wavelength is equal to 25,
this requirement determines the cavity resonant frequencies
and, hence, the dispersion characteristics of the finline.
Substituting the resonant frequency back into (9), the slot
field expansion coefficients and, hence, the cavity field can
be computed from the above equations.

_B.  Shielded Microstrips

Similar to the finline, a cavity can be formed by placing
two electric walls perpendicular to the shielded microstrip
as shown in Fig. 1(b). This configuration can be employed
to compute the dispersion characteristics of two shielded
broadside-coupled striplines. The magnetic wall at z=0
yields the even-mode solution while the electric wall at
z =0 applies to the odd-mode computation. Conveniently,
(1) and (2) are used to represent the x- and y-components
in regions 1 and 2, as before. Replacing the slot field
representation by the stripline surface current density

J=jY.Cp, (12)
q
the pertinent boundary conditions are

=0 on the stripline
E.=E; ’ 13
! ’{ elsewhere (13)

R 2J on the stripline
H,—-H)= ’ o 14
zx( ! ! ) {0, elsewhere. (14)

To enforce these boundary conditions, we first substitute
(1), (2), and (12) into (13) and (14). Taking the scalar
product of the resultant equation obtained from (13) with
¢,, then integrating over the waveguide cross section and
taking the scalar product of the same equation with v,
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then integrating over the stripline area, yields
(15)
(16)

4,50 (8,8)] = B,sin [ B(h - 9)] =1,

LW,U,=0

where U, can be computed by combining (1), (2), (12), (14),
and (15) and is given by
U,=2%

CWon/G, (17)

Here, G, is given by (11), and W is defined by (8) with the
slot field basis function replaced by the stripline surface
current basis function. Upon substituting (17) into (16), we
obtain a matrix equation given by the same form of (9)
with the matrix elements defined by

Z pn qn (18)

After solving the determinant equation for the cavity reso-
nant frequency, the current expansion coefficients and the
cavity field distribution can be computed by substituting
into (1), (2), (15), and (17).

C. Multiple Conductors with Multiple Dielectric Layers

The derivation shown above is applicable to simple
finline or microstrip with only two dielectric layers (electric
wall) or two broadside-coupled slotlines or striplines (elec-
tric wall for odd mode, magnetic wall for even mode). The
same concept is also applicable to the general case of
multiple conductors with multiple dielectric layers as shown
in Fig. 2. The following equations are derived for two
offset-coupled slotlines or two offset-coupled striplines.

With reference to Fig. 2(a) or (b), the fields in regions 1
and 2 can be expressed by the same equations as before. In
region 3, where g <z <g’, the x- and y-components are
written as

=) [I n exp( -
n

B/z)+ R,exp(jBz)] ¢, (192)

JjBz)— R, exp( jB;z)] Y, 2x,
(19b)

H = Z [Inexp(—

where the double prime stands for region 3. All quantities
in region 3 are defined the same as in region 2, except the
prime is replaced by double prime.

Consider first the slotline case. The slot aperture electric
field at z = g is defined by (4), and at z =g’ by

=2.C/,. (20)
q

Enforcing the boundary conditions at z = g and g’, taking
the scalar inner product of the electric field with the fields
in the slotlines defined above, and a little mathematical
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manipulation we obtain
= [v,exp (JB;2") -V exp (iB;8)]/
{2sin[B;(g'-2)]} (212)

= [vyexp (- j8)'g) - Vyexo (- j8yz’)]/
{2jsin[By(g'-2)]} (21b)
V,=YCW, (21¢)
q
V,= LC;W;, (214)
q

where W and W’ are defined as in (8) with integration
limits and basis functions specified for the corresponding
slotlines. Upon substituting these two equations into the
magnetic-field equations obtained from the boundary con-
ditions, a simple manipulation yields the following two
matrix equations:

[qu] [Cq] = [7}41 [Cq’]
[&,0]lc]=[7][cl

(22a)
(22b)

where
= Z WG, (232)
= E W, WG, (23b)
Z w,W,,F, (23c)
= Euf,,',,Wq,,F (23d)
G,=Y,[ St (Bo8)| + Xircot[Bi (g~ )] (240)
G, =Ycot[B;(h—g')|+ ¥ cot[ B(g'—g)]. (24b)

Eliminating [C;] in (22), we obtain the matrix equation
given by the same form of (9) with
_1 ,
(7]

[Mpq] = [qu] - [7}14] [R’pq (29)
The nontrivial solution of [C,] and, hence, [C]] can be
computed by setting the determinant of (25) equal to zero
as in the previous finline and microstripline cases.
Equations similar to (22)-(25) can be derived for the two
offset-coupled striplines as shown in Fig. 2(b). In this case,
the slot aperture electric fields of (4) and (20) are replaced
by the surface current densities of (12) and

=Y
q

Using the same derivation as in the shielded microstrip
case, we obtain (22) and (25), provided that G, and G, in
(23a) and (23b) are replaced by G, /D, and G, /D,, respec-
tively, and F, in (23c) and (23d) is replaced by — F, /D,,
where

(26)

D,=G,G,-

After the resonant frequency is determined, the characteris-

F2.
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tic impedance can be computed by the known field distri-
bution, which requires the solution of (21). For the strip-
line case, (21) is replaced by the following form:

= [U,exp (JBrg") - Uyexp(JBrg)}/
[2) sinB"(g’— g)] (27a)
R, = {Un'exp(—jﬁn” )—U,exp (- ]/

2/ Smﬁn”(g’— g) (@)

where
U,=-— ]2( G W,,+ FJW,)/D,  (283)
(28b)

v/ =-j¥x(6,J W, +FJW,)/D,.
q

W and W’ are defined by (8) with the slot field basis
function replaced by the stripline surface current basis
function and the integration limits taken over the corre-
sponding stripline. These equations can be used to specify
the field distribution at the given resonant frequency. Note
that the convention of the magnetic or electric wall at z =0
remains valid for the above equations.

III. MobpAL FUNCTIONS AND BAsis FUNCTIONS

The rectangular waveguide vectoral modal functions for
TE and TM modes are given by Marcuvitz [6] in the
following normalized expressions:

-l

1%")@"} (29)

— (0w s+ 57]) " 00
Exn .
[Ey,, = in (nT1x/a) S (T1y/b) (30b)
_{1ifn=0 .
3n-<zifﬁ¢o- (30¢)

These expressions have been specified for the y-depen-
dence as shown. Both TE and TM are referred to the
z-propagating modes and are suitable for the present appli-
cation. \

In general, the basis functions in (4), (12), (20), and (26)
have both the x- and y-components since the general
propagating modes in a slotline or a stripline are hybrid
modes. However, the dominant slotline mode is a TE mode
and the dominant stripline mode is a quasi-TEM mode.
Thus, the fundamental mode requires only the x-compo-
nent of the slot field or the y-component of the stripline
current.

For a narrow slot or strip, single field or current compo-
nent representation is sufficient not only for the dorninant
mode, but also for the next higher order mode. Also, only
one or two terms in the basis functions are adequate to
represent the slot field or the strip current dens1ty, and the
solution obtained is sufficiently accurate for many en-
gineering applications. The following general form can be
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used for all cases considered above:

Q,=2C, 0., + 5C, 04 (31)
v, =3C!,Jeqt IC)rirq (32)
€x cos i
o] - o amta - eral ey (320
Jxq _ sin _ sin
[qu]— COS[‘]W(X C)/d]COS(WJ’/b)~ (33b)

The primed basis functions are given by the same expres-
sions as above except that ¢ and d are replaced by ¢’ and
d’, respectively.

For a narrow slotline or stripline, the pulse basis func-
tions are quite accurate and can be used for practical
computation. The pulse basis function is defined

1, —A/2 +A/2
Hq(x,xq,A)={ x,—A/2<x<x,+A/

0, elsewhere
where x, is an arbitrary point on the slot aperture or the
strip conductor. Equation (34) is used to replace the first
factor in the right-hand side of (33).

(34)

IV. NuMERICAL RESULTS

Based on the above formulation and the specified basis
functions, -dispersion characteristics of finned rectangular
waveguides, shielded bilateral finlines, microstrip, and
shielded coupled striplines are computed for comparison
with various published results. Favorable comparisons
verify the validity and the usefulness of the transverse
modal analysis technique. Trigonometric basis functions
are used to compute the following dispersion results by the
transverse modal analysis (TMA) method unless otherwise
stated. All the frequencies listed in the following are under-
stood in gigahertz and lengths in inches.

A. Finned Rectangular Waveguides

A finned rectangular waveguide is a finline without the
dielectric substrate as shown in Fig. 1(a). Numerical solu-
tions can be computed from the equations derived in
Section II-A with identical dielectric constants. Waveguide
dimensions of a=1 in by £ =2 in and the finlines located
at the middle of the waveguide are chosen for the present
example.

Consider first the half-width slot where d = 0.5 in. The
computed dominant mode cutoff wavelengths with slot
mode to the waveguide mode ratios equal to 1/2, 1 /4, and
3/4 are shown in Fig. 3(a). The proper mode ratio is 1,/2.
The noncontributing modes by geometric symmetry are
kept for computer programming convenience. Keeping the
waveguide mode number equal to 30, the cutoff wavelength
versus the number of slot modes is plotted in Fig. 3(b).
These plots are similar to the equivalent susceptance of a
waveguide iris computed by the modal analysis. Similar
convergence characteristics are observed using the pulse
basis functions, but the rate of convergence is slower. Note
that the computed cutoff wavelengths are independent of
the cavity length chosen in the computation.
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Fig. 3. Computed cutoff wavelength for a finned rectangular waveguide.

(a) Constant slot to waveguide mode ratio. OO0 ratio =1/2,
OO Oratio =1 /4, aan ratio= 3 /4. (b) 30 waveguide modes.

TABLE I
COMPARISON OF THE FINNED RECTANGULAR WAVEGUIDE CUTOFF
WAVELENGTHS
T™MA ™ !
Slot Width Trigonometnc  Pulse Single BF
172 44503 44583 45233 44385 4 4464
1/4 51950 52115 52488 51760 51867
116 65961 66227 65946 65703 6 5876

Waveguide dimensions: 1 by 2”.

Computed cutoff wavelengths of various finned rectan-
gular waveguides are tabulated in Table I. Proper mode
ratios and a sufficient number of basis functions are em-
ployed by the TMA method. These results compare favor-
ably with those computed by Shih and Hoefer [7] using the
transmission-line matrix (TLM) technique and by Hoefer
[8] using the quasi-static transverse resonant (TRT) method.

Numerical experiments show that sufficient accurate re-
sults are obtained by adding one more basis function for
each incremental slot width of 0.01 wavelength. For a
narrow slot with slot width 4 =1/16, shown in Table I,
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TABLE II
CoMpUTED CUTOFF FREQUENCIES OF FINLINE #1

813

TABLE III
CoMPUTED EFFECTIVE DIELECTRIC CONSTANTS OF FINLINE # 2

Slot Slab TMA TLM
width Thickness DomtMode 2ndMode DomtMode 2nd Mode
1/8 1/8 15202 38794 1514 3965
1/8 1/4 14117 3.4370 1415 3486
18 172 13807 2 8625 1.359 2 890
12 1/8 2 3041 5 5683 2.306 5594
12 14 21364 51485 2.125 5.144
12 172 19897 4.4590 1987 4450

only one basis function is required to obtain the compara-
ble accuracy. Using only one basis function, the computed
cutoff wavelength is equal to 6.5946 as compared to 6.5899
using nine basis functions.

B. Bilateral Finlines

The bilateral finline is shown in Fig. 2(a) with ¢ = ¢’ and
d = d’. The odd-mode dispersion characteristics are identi-
cal to that in a shielded slotline. Bilateral finlines have
been investigated by Shih and Hoefer [9], who employed
the TLM method, and Schmidt and Itoh [10], who em-
ployed the spectral-domain (SD) method. The following
two configurations are considered here.

Finline #1
Waveguide dimensions 1.0 by 2.0 in,
Dielectric slab relative dielectric constant =

2.2,
thickness = 0.5 in, 0.25 in,
and 0.125 in,
Slot width 0.5 in and 0.125 in.
Finline #2 ’

Waveguide dimensions
Dielectric slab

0.14 in by 0.28 in,

relative dielectric constant =
3.0,

thickness = 0.00492 in,

Slot width 0.019685 in.

Tabulated in Table II are the computed cutoff frequencies
of the bilateral finline #1. Cutoff frequencies can be
computed by setting b extremely large compared to a.
Both the dominant and second-order mode cutoff frequen-
cies computed by the TMA method compare favorably
with those computed by TLM shown in the same table.
The effective dielectric constants of the dominant and
second-order modes in finline #2 have been computed by
Schmidt and Itoh using the SD method [10]. Their results
are tabulated in Table III with those computed by the
TMA method. Excellent agreement between these two sets
of computed results verify the validity of these two meth-
ods. Note that the square root of the effective dielectric
constant is equal to the resonant wavelength divided by 2b.
To illustrate the dielectric slab effect on the convergence
characteristics, computed effective dielectric constants of
the dominant mode in finline #2 versus the maximum slot
mode index are shown in Fig. 4, where the proper mode
ratio is 1/8. Note that the convergence is about the same

Dominant Mode Second Order Mode
freq TMA SD Freq TMA sD
14.100 02737 0.250 47 645 00240 0.00
21.621 08278 0828 50.893 01494 0157
29 262 10168 1026 55290 0.2848 0297
37375 11081 1.120 60 928 0.4170 0.423
54.038 11927 1200 74.807 0.6224 0631
62.906 1.2182 1225
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Fig. 4. Computed effective dieleciric constant for finline #2 at 29.26

GHz. (a) Constant mode ratio. O ratio =1/8, OO O ratio =1/4. (b)
80 waveguide modes.

as in the absence of the dielectric slab. Plotted in Fig. 5 are
the same dispersion results computed by the pulse basis
functions. Computed results by the pulse basis functions
converge slower than, but approach the same solutions as
computed by the trigonometric basis functions.

C. Shielded Microstrips

Dispersion characteristics of shielded microstrips have
been investigated by Daly [11] using the finite-element
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TABLE IV
COMPARISON OF COMPUTED EFFECTIVE DIELECTRIC CONSTANT OF
A SHIELDED MICROSTRIP.

Quasi-TEM Mode Waveguide Mode

Freq TMA Finite Element Freq TMA Finite Element
3411 29934 2 964 6 440 08398 0841
4402 31952 3185 7553 18053 1090
6337 34631 3455 9 495 15452 1536
8819 36555 3635 12 099 19422 2081
10 201 37187 3712 13 288 21916 2 340

Stripline width = 0.5”. Waveguide dimensions: 1.0”” by 0.5”. Dielectric
slab: thickness = 0.25””. Relative constant = 4.0.

method. The effective dielectric constants of the dominant
mode (quasi-TEM mode) and a higher order mode com-
puted by the finite-element method and by the transverse
modal analysis method are shown in Table IV. Observe
that these values, including both the quasi-TEM and a
higher order mode, computed by two different methods
agree very well with each other.

Depicted in Fig. 6 are the computed effective dielectric
constant versus the strip modal index number for the
example microstrip at the frequency approximately equal
to 6.34 GHz. The proper mode ratio is 1/2. The conver-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 9, SEPTEMBER 1985

3.83
3.52 l\
E \
2 35
4]
c
o
© \
e 35
t” \
g
L3
a8 3.49
2 348 A
5 Y
347 HAYI“\\B/E\B/B\!
3.46 -~ —
[o] 5 10 15 20
Maximum Strip Mode #
(a)
3.483 [
T
3.48 //
% A 7
Qo
E 3.477 ‘\i I,— _e_"_l . . ?——mf
S i Vs 7
T
T 3474 \\ ks /
3
: \\ p—éL
>
= 3.471
i ! 7
5 \\ /
3 468
L — —
u—n\
3.485 —
[e] 5 10 15 20
Maximum Strip Mode #
(b)

Fig. 6. Computed effective dielectric constant of a shielded microstrip
at 6.34 GHz. (a) Strip to waveguide mode ratio =1/2. (b) 30 waveguide
modes.

gence is similar to that for finlines except that the com-
puted effective dielectric constant follows a decreasing
trend as the strip mode number increases.

D.  Broadside -Coupled Striplines

Using the equations derived in either Section II-B or
II-C, one can compute the dispersion characteristics of
shielded two broadside-coupled striplines. When the equa-
tions derived in Section II-B are employed, the electric wall
equations are applied to the odd modes and the magnetic
wall equations to the even modes.

Computed effective dielectric constants of both even and
odd modes are tabulated in Tables V and VI for compari-
son with those computed by Kawano [12] and Wu [13]. The
results of Kawano and Wu are computed by the spectral-
domain technique with no sidewalls in the geometry. How-
ever, two sidewalls are required using the transverse modal
analysis method. The sidewall effects on the odd mode is
negligible if the sidewall spacing is equal to 10 stripline
widths or greater. In the case of the even mode, the
sidewall spacing must be equal to or greater than 20
stripline widths. Thus, a 20-stripline width sidewall spacing
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TABLE V
COMPARISON OF COMPUTED EFFECTIVE DIELECTRIC CONSTANTS
OF TWO SHIELDED BROADSIDE STRIPLINES

Even Mode 0Odd Mode
Freq TMA Kawano Wu Freq ™A Kawano Wu
2.664 12269 1224 1244 2151 18818 1877 1916
6 647 12317 1234 1253 5341 19077 1900 1926
8 846 12365 1241 1258 7097 19210 1913 1939
13197 12499 1246 1271 10 585 19430 1935 1958
25636 13249 1331 1353 20 888 19956 1989 2 006
29178 13358 - 1386 27 647 20252 2019 2 040

Waveguide dimension: 1.1969” by 0.2992”". Dielectric slab: thickness
= 0.02992". Relative constant = 2.32. Stripline width = 0.05984"".

TABLE VI
COMPARISON OF COMPUTED EFFECTIVE DIELECTRIC CONSTANTS
OF TwO SHIELDED BROADSIDE STRIPLINES

0dd M;)de

Even Mode
Freq T™MA Kawano Wu Freq TMA Kawano Wu
2064 2045 203 208 2281 6.694 668 678
4111 2061 208 215 5647 6.826 678 689
10 061 2151 216 215 11133 7026 697 709
18711 2487 245 255 21761 7 355 727 7 42
27 947 3097 291 305 27 597 7516 7 41 759

Waveguide dimension: 0.4724” by 0.2992”. Dielectric slab: thickness =
0.02992”. Relative constant = 9.6. Stripline width = 0.05984"".

TABLE VII
COMPARISON OF COMPUTED EFFECTIVE DIELECTRIC CONSTANTS
OF Two OFFSET COUPLED STRIPLINES

0Odd Mode Even Mode
Freq TMA Wu Freq TMA Wu
4025 2150 2142 4155 2017 2026
10 059 2151 2144 10389 2017 2026
20.109 2153 2.147 20778  2.017 2027
29 780 2155 2.150 30780 2017 2029
39 396 2157 2153 39573 2.017 2029
20 573* o0 -
23000* 0412 0375
29,096 1029 1050
39 000* 1479 1530

Offset = 0.05””. Waveguide dimension: 2.0 by 0.134’”. Dielectric slab:

thickness = 0.01”. Relative constants = 2.0 and 2.2. Stripline width = 0.1,

*Higher order modes.

is used to compute the TMA results shown in Tables V and
VL

Observe that the effective dielectric constants computed
by the TMA method fall between the results computed by
Kawano and Wu. The data of Kawano and Wu are ob-
tained from interpolation of plotted curves. It is interesting
to note that identical TMA results are obtained using the
equations of Sections 1I-B and II-C.

E. Offset-Coupled Striplines

A generalized geometry of two offset-coupled striplines
as shown in Fig. 2(b) is quite important in the coupler
design. Its propagation characteristics have not been re-
ported in the open literature. Using the equations derived
in Section II-C, the dispersion characteristics of two
offset-coupled striplines can be computed. The computed
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effective dielectric constants of two dielectric geometries
are tabulated in Table VII. Also tabulated in Table VII is
the dispersion results computed by Wu [13] using the
spectral-domain method as in the broadside-coupled strip-
lines.

Again, excellent agreement is observed for both even-
and odd-mode solutions between these two computational
methods.

V. CoNCLUSION

The transverse modal analysis has been demonstrated as
a useful technique for computing the dispersion character-
istics of several transmission-line systems, such as finned
rectangular waveguides, finlines, shielded microstrips and
strips, and shielded two-coupled slotlines and strips.
Numerical results computed by the transverse modal anal-
ysis method are in close agreement with those computed by
the transmission-line matrix, transverse resonance, finite-
element, and spectral-domain methods. The achievable ac-
curacy is beyond engineering requirements. Both the domi-
nant mode and higher order modes have been examined.

Although most of the computation used trigonometric
basis functions, it is shown that comparable accuracy is
achieved by the pulse basis functions, especially for narrow
slotlines or striplines. However, in the case of broad slots
or strips, the computed results using the pulse functions are
less accurate and converge slower than those using trigono-
metric functions.

Also, it is demonstrated that the convergence is not
affected by the presence of a dielectric slab. It is shown
that only a small number of basis functions are required
for narrow striplines or slotlines. Therefore, the transverse
modal analysis is well suited for printed circuit transmis-
sion-line analysis.

In addition to the transmission-line systems discussed
above, the transverse modal analysis can be applied to
other complicated configurations. The dispersion char-
acteristics of a slot coupled to a parallel stripline can be
computed by a modification of (22)-(24). Multiple layers
of dielectric slabs transmission-line systems can be in-
vestigated by extension of the technique formulated here.
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